Modulatory Effect of Monochromatic Blue Light on Heat Stress Response in Commercial Broilers

Read full paper:

modulatory-effect-of-monochromatic-blue-light-on-heat-stress

Source:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494062/

Introduction

Heat stress is one of the most serious problem facing poultry production in all subtropical countries during summer []. The severity of heat stress is due to the resultant oxidative stress which is characterized by accumulation of oxygen reactive species (ROS) in an excess to cellular antioxidants []. Besides heat exposure, vigorous bird handling, presence of oxidize dietary oils, and infection are associated with ROS formation []. ROS accumulation is accompanied by disturbances of cellular balance and modulation of several biological macromolecules including nucleic acid and protein []. The cellular antioxidant enzymes represent the first defense system which is responsible for restoring cellular hemostasis. Thus, the increase in the antioxidant enzyme activities including superoxide dismutase (SOD) and catalase (CAT) protects the cells from heat stress-ROS-associated damaged effects. This response greatly differs according to the heat stress conditions, species, and affected tissue [].

Moreover, one of the main other consequences of heat stress is protein damage and subsequent accumulation of unfolded proteins []. Affected cells increase the expression of chaperone proteins and heat shock protein (HSPs), leading to proteostasis and thermotolerance []. The HSPs include Hsp40, Hsp60, Hsp70, Hsp90, Hsp110, and the small HSPs. HSP70 and HSP90 are the most conserved HSPs. They work to protect the cell and prevent the aggregation of unfolding protein []. Additionally, HSPs protect the cells from heat shock deleterious impacts and enhance tissue repair []. HSP expression is regulated mainly at the level of transcription by four heat shock transcription factors (HSFs). HSFs include HSF-1, HSF-2, and HSF-4 (specific to mammals) and HSF-3, which is avian specific []. HSFs modify HSP expression through interaction with a specific DNA sequence (heat shock element (HSE)) in their promoter []. Hence, they regulate the HS response.

Different approaches have been done to control the destructive effects of heat stress. Among which were inclusion of feed additives in the diet and water, as well as light management []. However, lighting management studies in the alleviation of heat stress deleterious effects are still lacking. Previous studies looked at the effect of different monochromatic lights (white, red, green, and blue) on the broiler immune response and the breed performance []. Light management was found to increase productivity and improve animal welfare []. Thus, light color has been considered as a powerful management that can be used to modify many physiological, immunological, and behavioral pathways []. For instance, blue light has been shown to have calming effect by reducing the negative impact of different stressors []. Blue light modulates peripheral blood T lymphocytes proliferation, the response to Newcastle disease virus vaccine, heterophils to lymphocytes (H/L) ratio, and interleukin-1β (IL-1β) expression []. In addition, using blue light significantly increases the numbers of intestinal intraepithelial lymphocytes, goblet cells, and IgA+ cells []. Moreover, blue light significantly improves meat quality by decreasing lipid peroxidation and improving antioxidant activities by enhancing SOD, GHS, and total antioxidant capability activities and reduced MDA content both in breast and thigh muscles [].

The aim of their work was to investigate effects of the monochromatic blue light (BL) on alleviating the negative impact of induced cyclic chronic heat stress in commercial broiler strains. They investigated the regulatory effect of using monochromatic blue light during heat stress on heat stress biomarkers activity including antioxidant enzyme activity, histopathological changes in the liver tissue, HSP gene expression, and bird’s temperature.

Conclusion

Their findings represent the first reported data on the role of monochromatic blue light in regulating the bird’s resistance to heat stress. Replacing white light by the blue one during heat stress would modify the heat shock biomarker activities which might enhance the bird’s resistance to negative impacts of heat stress. Finally, theirresults suggest that Cobb 500 have a better response to blue light than Ross 308. Therefore, using blue light during heat stress represents a cheap tool to manage and control heat stress in poultry farms. Therefore, scientists strongly recommend using blue light in poultry houses during summer.

References

1. Allen C. D., Macalady A. K., Chenchouni H., et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management2010;259(4):660–684. []
2. Akbarian A., Michiels J., Degroote J., Majdeddin M., Golian A., De Smet S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. Journal of Animal Science and Biotechnology2016;7(37):1–14. doi: 10.1007/s13197-016-2361-2. [PMC free article] [PubMed] [CrossRef[]
3. Halliwell B., Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? British Poultry Science2004;142(2):231–255. doi: 10.1038/sj.bjp.0705776. [PMC free article] [PubMed] [CrossRef[]
4. Feng J., Zhang M., Zheng S., Xie P., Ma A. Effects of high temperature on multiple parameters of broilers in vitro and in vivoPoultry Science2008;87(10):2133–2139. doi: 10.3382/ps.2007-00358.[PubMed] [CrossRef[]
5. Estévez M. Oxidative damage to poultry: from farm to fork. Poultry Science2015;94(6):1368–1378. doi: 10.3382/ps/pev094. [PubMed] [CrossRef[]
6. Ye S., Lowther S., Stambas J. Inhibition of reactive oxygen species production ameliorates inflammation induced by influenza A viruses via upregulation of SOCS1 and SOCS3. Journal of Virology2015;89(5):2672–2683. doi: 10.1128/JVI.03529-14. [PMC free article] [PubMed] [CrossRef[]
7. Davies K. J. Oxidative stress: the paradox of aerobic life. Biochemical Society Symposium1995;61:1–31. [PubMed[]
8. McCormick P. H., Chen G., Tlerney S., Kelly C. J., Bouchier-Hayes D. J. Clinically relevant thermal preconditioning attenuates ischemia-reperfusion injury. The Journal of Surgical Research2003;109(1):24–30. [PubMed[]
9. Staib J. L., Quindry J. C., French J. P., Criswell D. S., Powers S. K. Increased temperature, not cardiac load, activates heat shock transcription factor 1 and heat shock protein 72 expression in the heart. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology2007;292(1):R432–R439. doi: 10.1152/ajpregu.00895.2005. [PubMed] [CrossRef[]
10. Jaattela M. Heat shock proteins as cellular lifeguards. Annals of Medicine1999;31(4):261–271.[PubMed[]
11. Belhadj Slimen I., Najar T., Ghram A., Abdrrabba M. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. Journal of Animal Physiology and Animal Nutrition2016;100(3):401–412. doi: 10.1111/jpn.12379. [PubMed] [CrossRef[]
12. Yu J., Bao E., Yan J., Lei L. Expression and localization of Hsps in the heart and blood vessel of heat-stressed broilers. Cell Stress & Chaperones2008;13(3):327–335. doi: 10.1007/s12192-008-0031-7.[PMC free article] [PubMed] [CrossRef[]
13. Nakai A., Morimoto R. I. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Molecular and Cellular Biology1993;(13)(4):1983–1997. [PMC free article] [PubMed[]
14. Morimoto R. I., Kline M. P., Bimston D. N., Cotto J. J. The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays in Biochemistry1997;32:17–29.[PubMed[]
15. Fujimoto M., Nakai A. The heat shock factor family and adaptation to proteotoxic stress. Federation of European Biochemical Societies Journal2010;277(20):4112–4125. [PubMed[]
16. Lara L. J., Rostagno M. H. Impact of heat stress on poultry production. Animals (Basel)2013;3(2):356–369. doi: 10.1016/j.rpor.2013.09.003. [PMC free article] [PubMed] [CrossRef[]
17. Cao J., Liu W., Wang Z., Xie L. J. D., Chen Y. Green and blue monochromatic lights promote growth and development of broilers via stimulating testosterone secretion and myofiber growth. Journal of Applied Poultry Research2008;17(2):211–218. []
18. Yang Y., Yu Y., Pan J., Ying Y., Zhou H. A new method to manipulate broiler chicken growth and metabolism: response to mixed LED light system. Scientific Reports2016;6, article no. 25972 doi: 10.1038/srep25972. [PMC free article] [PubMed] [CrossRef[]
19. Pan J., Yang Y., Yang B., Yu Y. Artificial polychromatic light affects growth and physiology in chicks. PloS One2014;9(12, article e113595) doi: 10.1371/journal.pone.0113595. [PMC free article] [PubMed] [CrossRef[]
20. Pan J., Yang Y., Yang B., Dai W., Yu Y. Human-friendly light-emitting diode source stimulates broiler growth. PloS One2015;10(8, article e0135330) doi: 10.1371/journal.pone.0135330. [PMC free article][PubMed] [CrossRef[]
21. Pan J., Lu M., Lin W., et al. The behavioral preferences and performance of female broilers under unevenly distributed yellow led lights with various intensities. Transactions of the ASABE2014;57(4):1245–1254. doi: 10.13031/trans.57.10486. [CrossRef[]
22. Mohamed R. A., Eltholth M. M., El-Saidy N. R. Rearing broiler chickens under monochromatic blue light improve performance and reduce fear and stress during pre-slaughter handling and transportation. Biotechnology and Animal Husbandry2014;30(3):457–471. doi: 10.2298/BAH1403457M. [CrossRef[]
23. Xie D., Wang Z. X., Dong Y. L., et al. Effects of monochromatic light on immune response of broilers. Poultry Science2008;87(8):1535–1539. [PubMed[]
24. Prayitno D. S., Phillips C. J., Stokes D. K. The effects of color and intensity of light on behavior and leg disorders in broiler chickens. Poultry Science1997;76(12):1674–1681. [PubMed[]
25. Lewis P., Morris T. Poultry and coloured light. World’s Poultry Science Journal2000;56(3):189–207. doi: 10.1079/WPS20000015. [CrossRef[]
26. Xie D., Li J., Wang Z. X., et al. Effects of monochromatic light on mucosal mechanical and immunological barriers in the small intestine of broilers. Poultry Science2011;90(12):2697–2704. doi: 10.3382/ps.2011-01416. [PubMed] [CrossRef[]
27. Ke Y. Y., Liu W. J., Wang Z. X., Chen J. L. Effects of monochromatic light on quality properties and antioxidation of meat in broilers. Poultry Science2011;90(11):2632–2637. doi: 10.3382/ps.2011-01523.[PubMed] [CrossRef[]
28. Kristensen H. H. The effects of light intensity, gradual changes between light and dark and definition of darkness for the behaviour and welfare of broiler chickens, laying hens, pullets and turkeys. Scientific Report for the Norwegian Scientific Committee for Food Safety2008 doi: 10.1016/j.molonc.2008.02.003.http://www.vkm.no/dav/7643446bd0.pdf. [CrossRef[]
29. Directive C. 43/EC of 28 June 2007, laying down minimum rules for the protection of chickens kept for meat production. Official Journal of the European Union L2007;182:19–28. []
30. NRC. Nutrient Requirements of Poultry. USA: National Research Council. National Academy Press, Washington; 1994. []
31. Azad M. A., Kikusato M., Zulkifli I., Toyomizu M. Electrolysed reduced water decreases reactive oxygen species-induced oxidative damage to skeletal muscle and improves performance in broiler chickens exposed to medium-term chronic heat stress. British Poultry Science2013;54(4):503–509. doi: 10.1080/00071668.2013.801067. [PubMed] [CrossRef[]
32. Bancroft J. D., Cook H. C., Beckstead J. H. Manual of Histological Techniques and Their Diagnostic Application. Churchill Livingstone; 1994. (Archives of Pathology and Laboratory Medicine). []
33. Aebi H. Catalase in vitro. Methods in Enzymology1984;105:121–126. [PubMed[]
34. Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods2001;25(4):402–408. doi: 10.1006/meth.2001.1262. [PubMed] [CrossRef[]
35. Lin H., Decuypere E., Buyse J. Acute heat stress induces oxidative stress in broiler chickens. Comparative Biochemistry and Physiology. Part a, Molecular & Integrative Physiology2006;144(1):11–17. [PubMed[]
36. Murphy M. P. How mitochondria produce reactive oxygen species. The Biochemical Journal2009;417(1):1–13. doi: 10.1042/BJ20081386. [PMC free article] [PubMed] [CrossRef[]
37. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science2002;9(7):405–410. [PubMed[]
38. Surai P. F., Fisinin V. I. Antioxidant-prooxidant balance in the intestine: applications in chick placement and pig weaning. Journal of Veterinary Science & Medicine2015;3(1):66–84. doi: 10.3390/antiox4010204. [CrossRef[]
39. Shatskikh E., Latypova E., Fisinin V., Denev S., Surai P. Molecular mechanisms and new strategies to fight stresses in egg-producing birds. Agricultural Science and Technology2015;7(1):3–10.[]
40. Surai P. F. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants (Basel) 2015;(4)(1):204–247. doi: 10.3390/antiox4010204. [PMC free article] [PubMed] [CrossRef[]
41. Surai P. F. Antioxidant systems in poultry biology: heat shock proteins. Journal of Science2015;5(12):1188–1222. doi: 10.3390/antiox4010204. [CrossRef[]
42. Surai P. F. Selenium in Nutrition and Health. Nottingham, UK: Nottingham University Press; 2006. [CrossRef[]
43. Lobago F., Melese G., Mideksa B., Tibbo M. Comparative performance of two broiler hybrids (Cobb-500 and Ross) under small-scale production system in Debre Zeit, Central Ethiopia. AU Bulletin of Animal Health and Production in Africa2003;51(2):83–93. http://hdl.handle.net/10568/28367[]
44. Hascik P., Kacaniova M., Mihok M., Pochop J., Benczova E., Hlinku T. A. Performance of various broiler chicken hybrids fed with commercially produced feed mixtures. International Journal of Poultry Science2010;9(11):1076–1082. doi: 10.3923/ijps.2010.1076.1082. [CrossRef[]
45. Quinteiro-Filho W. M., Ribeiro A., Ferraz-de-Paula V., et al. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poultry Science2010;89(9):1905–1914. doi: 10.3382/ps.2010-00812. [PubMed] [CrossRef[]
46. Berrong S. L., Washburn K. W. Effects of genetic variation on total plasma protein, body weight gains, and body temperature responses to heat stress. Poultry Science1998;77(3):379–385. [PubMed[]
47. Zeng T., Li J. J., Wang D. Q., Li G. Q., Wang G. L., Lu L. Z. Effects of heat stress on antioxidant defense system, inflammatory injury, and heat shock proteins of Muscovy and Pekin ducks: evidence for differential thermal sensitivities. Cell Stress & Chaperones2014;19(6):895–901. doi: 10.1007/s12192-014-0514-7. [PMC free article] [PubMed] [CrossRef[]
48. Surai P. F. Antioxidant systems in poultry biology: superoxide dismutase. Journal of Animal Research and Nutrition2016;1(1):p. 8. []
49. Rimoldi S., Lasagna E., Sarti F. M., et al. Expression profile of six stress-related genes and productive performances of fast and slow growing broiler strains reared under heat stress conditions. Meta Gene2015;6(6):17–25. doi: 10.1016/j.mgene.2015.08.003. [PMC free article] [PubMed] [CrossRef[]
50. Devi G. S., Prasad M. H., Saraswathi I., Raghu D., Rao D. N., Reddy P. P. Free radicals antioxidant enzymes and lipid peroxidation in different types of leukemias. Clinica Chimica Acta; International Journal of Clinical Chemistry2000;293(1-2):53–62. [PubMed[]
51. Thomas M. J. The role of free radicals and antioxidants. Nutrition2000;16(7):716–718. [PubMed[]
52. Willemsen H., Swennen Q., Everaert N., et al. Effects of dietary supplementation of methionine and its hydroxy analog DL-2-hydroxy-4-methylthiobutanoic acid on growth performance, plasma hormone levels, and the redox status of broiler chickens exposed to high temperatures. Poultry Science2011;90(10):2311–2320. doi: 10.3382/ps.2011-01353. [PubMed] [CrossRef[]
53. Sahin K., Onderci M., Sahin N., Gursu M. F., Kucuk O. Dietary vitamin C and folic acid supplementation ameliorates the detrimental effects of heat stress in Japanese quail. The Journal of Nutrition2003;133(6):1882–1886. [PubMed[]
54. Ismail I. B., Al-Busadah K. A., El-Bahr S. M. Oxidative stress biomarkers and biochemical profile in broilers chicken fed zinc bacitracin and ascorbic acid under hot climate. American Journal of Biochemistry and Molecular Biology2013;(3):202–214. doi: 10.3923/ajbmb.2013.202.214. [CrossRef[]
55. Altan O., Pabuçcuoğlu A., Altan A., Konyalioğlu S., Bayraktar H. Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. British Poultry Science2003;44(4):545–550. doi: 10.1080/00071660310001618334. [PubMed] [CrossRef[]
56. Tan G.-Y., Yang L., Fu Y. Q., Feng J. H., Zhang M. H. Effects of different acute high ambient temperatures on function of hepatic mitochondrial respiration, antioxidative enzymes, and oxidative injury in broiler chicken. Poultry Science2010;89(1):115–122. doi: 10.3382/ps.2009-00318. [PubMed] [CrossRef[]
57. Marques C., Guo W., Pereira P., et al. The triage of damaged proteins: degradation by the ubiquitin-proteasome pathway or repair by molecular chaperones. Federation of American Societies for Experimental Biology Journal2006;20(6):741–743. doi: 10.1096/fj.05-5080fje. [PMC free article][PubMed] [CrossRef[]
58. Liu J. C., He M., Wan L., Cheng X. S. Heat shock protein 70 gene transfection protects rat myocardium cell against anoxia-reoxygeneration injury. Chinese Medical Journal2007;120(7):578–583. [PubMed[]
59. Zhang H. Y., Lv N. H., Xie Y., Guo G. H., Zhan J. H., Chen J. Protection of heat shock preconditioning on acute gastric mucosal lesion in scalded rats and its mechanism. Zhonghua Shao Shang Za Zhi2007;23(1):58–61. [PubMed[]
60. Luh S. P., Kuo P. H., Kuo T. F., et al. Effects of thermal preconditioning on the ischemia-reperfusion-induced acute lung injury in minipigs. Shock2007;28(5):615–622. doi: 10.1097/shk.0b013e318050c694.[PubMed] [CrossRef[]
61. Yu J. M., Bao E. D. Effect of acute heat stress on heat shock protein 70 and its corresponding mRNA expression in the heart, liver, and kidney of broilers. Asian-Australasian Journal of Animal Sciences2008;21(8):1116–1126. doi: 10.5713/ajas.2008.70703. [CrossRef[]
62. Lei L., Yu J. M., Bao E. D. Expression of heat shock protein 90 (Hsp90) and transcription of its corresponding mRNA in broilers exposed to high temperature. British Poultry Science2009;50(4):504–511. doi: 10.1080/00071660903110851. [PubMed] [CrossRef[]
63. Gu X. H., Hao Y., Wang X. L. Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 2. Intestinal oxidative stress. Poultry Science2012;91(4):790–799. doi: 10.3382/ps.2011-01628. [PubMed] [CrossRef[]
64. Zhang M., Yue Z., Liu Z., et al. Hsp70 and HSF-1 expression is altered in the tissues of pigs transported for various periods of times. Journal of Veterinary Science2012;13(3):253–259.[PMC free article] [PubMed[]
65. Tanabe M., Nakai A., Kawazoe Y., Nagata K. Different thresholds in the responses of two heat shock transcription factors, HSF1 and HSF3. The Journal of Biological Chemistry1997;272(24):15389–15395.[PubMed[]
66. Xie J. J., Tang L., Lu L., et al. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallusPloS One2014;9(7, article e102204) doi: 10.1371/journal.pone.0102204. [PMC free article] [PubMed] [CrossRef[]
67. Nerren J. R., Swaggerty C. L., MacKinnon K. M., et al. Differential mRNA expression of the avian-specific toll-like receptor 15 between heterophils from Salmonella-susceptible and -resistant chickens. Immunogenetics2009;61(1):71–77. doi: 10.1007/s00251-008-0340-0. [PubMed] [CrossRef[]
Recent Posts